Monday, February 24, 2014

Getting Electricity from a Jet

After the Turbocore, there is a dynamo (or as we call it these days, a permanent magnet generator).  The generator that is attached to the Turbocore produces electricity at 1 kHz, much too fast for conventional equipment to use it, so we pass the power through a rectifier to make stable DC power across a DC link.  After the DC link, an inverter changes the power to a more standard form of AC power – in this case 60 Hz standard utility power - so that it can go into the grid, power a compressor, power a beam pump, or be used for other applications.  A DC converter could also be installed in lieu of the inverter for DC applications.  This is a typical power conversion architecture for microturbines.



While this architecture is a little more complex than your household Honda generator, it gives us product flexibility and reliability.  The DC link is electrically simple, and is a good place to create modularity in the engine.  Components on the left can be changed independently of components on the right.  This means it’s easier for us to cost effectively provide 120V 1-phase power or 3 phase 240V power or even 48 VDC by changing a few parts.  On the other side of things, it’s easier for us to make upgrades to the underlying hardware—the engine and the generator—without sacrificing electrical quality.  In fact, multiple inverters and multiple generators can be attached to both sides of the link, providing end users with a wealth of options for power.

While we are talking about electrical, and what that means for the end user, we do want to talk about why the Dynamo Turbocore has two turbines.  We could have gone with a single turbine: it’s cheaper, there are less parts and less engineering to be done with a single shaft engine.  However, we went with a split shaft design because we realized doing so would result in a more stable and more reliable engine whose performance would be less sensitive to changes in the application. 

A two-shaft engine has two main subsystems: the gas generator and the power turbines.  The gas generator includes the compressors, the combustion chamber, and the turbines that power the compressors; the remaining turbines are mechanically connected to an electric generator and are called power turbines.  There are three main advantages for doing this.

The first advantage of a two-shaft engine is that the second turbine, which spins the electric generator, can be designed to operate at a lower RPM, which results in less stringent performance requirements for the turbo-machinery, the electric generator and the power conversion unit.   This holds true for mechanical loads as well, which also see significant advantages from lower gear ratios and lower speeds.  

The second advantage is that the power turbine is a constant power device, which is exhibited as a significantly superior torque characteristic versus engine speed compare to a single-shaft engine.  For a single-shaft engine, the available torque decreases to zero as the speed of the engine drops; for a two-shaft engine, the available torque increases as the speed decreases.  The torque characteristic for a two-shaft engine t is also superior to that of a reciprocating engine, which has a relatively flat torque curve.  The torque advantage is important during back starting heavy loads. 

Lastly, the Turbocores are controlled to provide consistent power to the power turbine; the gas generator is essentially de-coupled from the power demands;  the gas generator can be throttled up and down faster and the compressor is not limited by the load on the turbine, and can generally operate near their efficiency point.  The control system can be more robust—there is less compromise between keeping the engine operational and preventing a brown-out.  Big power generating turbines where the load varies over time are generally of this split shaft configuration.  As a corollary split shaft engines are easier to start, with less thermal loading to the turbine system.

It is for these reasons and others we went to a split shaft design for our Turbocore product.

Tuesday, February 11, 2014

How The Turbocore Generates Power

At its very core, Dynamo is building turbo machinery.  A very simple device made complex by time and design.  The first turbines were built as early as Hero of Alexandria in the 1st century, yet with the advent of steam power, and the ever increasing need to do more work with less fuel in a tighter footprint, the turbine has become ever more complex. 

To explain how the Dynamo Turbocore works, we first must learn a basic fact about engines.  Engines do work, which is really a force over a distance (or a torque over an angle).  To get this useful work, typical engines complete a cycle (to allow you to get work over and over again).  By pushing on a fluid, adding heat, and then letting the fluid expand, and using that expansion to drive mechanical motion, some of the energy in the heat can be used to produce useful work—like lifting water or pushing a car. 


Gas Turbines do this in a very simple way.  Air is accelerated by a compressor wheel, and then slowed down in a stationary passage to convert velocity to static pressure.  Then heat is added in a combustion chamber, which expands the air and increases the volumetric flow rate.  Then the hot air is accelerated through a set of nozzles, and then a turbine gets pushed by this fast moving air, and pulls out some of the kinetic energy.  In the Dynamo Turbocore, there are two such turbines, the first one is used to power the compressor, and the second generates shaft power for us to use.  The compressor creates the push (force / area) while the air flowing through the engine is the volume (length * area).  For those of you keeping track, you will know that the volume passing through the turbine is greater than the volume flowing through the compressor—this is another way to interpret why heating the air creates more net power.


Gas turbines like the Turbocore can be made more efficient by adding multiple compressors or spinning the compressors faster to increase the pressure, and they can be made more powerful by using bigger compressors to flow more air (and volume) through the engine.

So that takes care of the mechanical portions of the engine.  But of course, this doesn’t explain how we take power from a rotating turbine and convert that into useful electricity—more on this next week.